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Robust Control of Robot Manipulator with Actuators

Jongguk Yim'
Graduate School Department of Precision Mechanical Engineering, Hanyang University

Jong Hyeon Park"
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A Robust controller is designed for cascaded nonlinear uncertain systems that can be
decomposed into two subsystems; that is, a series connection of two nonlinear subsystems, such
as a robot manipulator with actuators. For such systems, a recursive design is used to include
the second subsystem in the robust control. The recursive design procedure contains two steps.
First, a fictitious robust controller for the first subsystem is designed as if the subsystem had an
independent control. As the fictitious control, a nonlinear H.. control using energy dissipation
is designed in the sense of L2-gain attenuation from the disturbance caused by system uncer
tainties to performance vector. Second, the actual robust control is designed recursively by
Lyapunov's second method. The designed robust control is applied to a robotic system with
actuators, in which the physical control inputs are not the joint torques, but electrical signals to
the actuators.
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1. Introduction

For a class of nonlinear systems, in which every
system is a series connection of a finite number of
nonlinear subsystem, recursive design is applied
to design stabilizing controls. Interesting progress
in recursive design has 'been achieved in adaptive
control of feedback linearizable systems (Kanella
koppoulos et aI., 1991).

Since many systems inherently have uncer
tainties such as parameter variations, external
disturbances, and unmodelled dynamics, robust
control is considered in the recursive design. To
design robust controllers, it is usual to use
Lyapunov's second method, as proceeded in the
existing results (Kim et aI., 1999; Corless and
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Leitmann, 1981). One of the difficulties is that
Lyapunov's second method requires a Lyapunov
function for control design. Another robust con
trol, which has attracted the attention of many
researchers, is H.. control. Although nonlinear
H.. control has been derived by an L2-gain analy
sis based on the coricept of energy dissipation
(van der Schaft, 1992; Isidori and Astolifi, 1992),

its applications are not easy due to the solution to
the Hamilton-Jacobi Inequality (HJ Inequality).
H.. control problems in nonlinear systems reduce
to the existence of the solution to HJ inequality
and many methods have been proposed in recent
papers (Astolifi and Lanari, 1994; Hu and Chang,
1988; Lu and Doyle, 1993; Park and Yim, 1999).

In the present paper, a robust control is
designed for cascaded nonlinear uncertain sys
tems using recursive design which is composed of
two steps. In first step, a fictitious robust control
ler for the first subsystem is designed as if the
subsystem had an independent control. As the
fictitious control, nonlinear H.. control is used in
this work to guarantee the performance of the
system to parameter uncertainty and the differ-
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that

and its passivity is achieved with the feedback
control

Proof: Using Eq. (3) as a new state, we rewrite
Eqs. (I) and (2) as

(3)

(4)

u=B- I ( -Ax2-h(XI) - xw

- KJ(LgE) T+r)

In the first subsystem, this control law is not
implementable and its effect must be achieved
through the x2-subsustem.

Assumption 2

I. There exists a constant matrix K; such that

q;(X2) =K WX2

2. There exists a fictitious state X w such that K
(xd = Kwxw·

Theorem I If Assumptions I and 2 are satisfied
with the fictitious state Xw, then the overall system
is feedback passive with respect to the new state

entiability of the control, which is required to
design the actual control recursively. The solution
to the HJ inequality can be obtained through a
more tractable nonlinear matrix inequality
(NLMI) method and the fact that the matrices
forming the NLMI are bounded (Park and Yim,
1999) .

In the second step, the actual robust control is
designed recursively by Lyapunov's second
method. The designed control is applied to a
robotic system with actuators. In a block diagram
representation of the overall robotic system, the
two blocks representing the actuator dynamics
and the robot dynamics are connected in series.

This paper is organized as follows. In Sec. 2,
the recursive design procedures are presented for
certain and uncertain systems. In Sec. 3, a robust
control is designed for a robotic system with
actuators using the procedures of Sec. 2. In Sec. 4,
simulations are performed to confirm the robust
performance of the proposed controller for robot
manipulator under parameter uncertainty. In Sec.
5, the conclusions are presented.

2. Recursive Design XI=!(XI) + g(XI) Kw(xw+ y)

y =AX2+ Bu +h(XI) + xw

(5)

(6)

2.1 Certain system
The class of nonlinear systems considered in

this paper consists of those which are a series
connection of two subsystems and whose
dynamics are described by

where Xl and X2 are the states of the systems and
u is a control input, and and A are B constant
matrices. Equation (2) of the second subsystem is
a differential equation whose output is the input
signal to the first subsystem.

In recursive design, it is required that there
exists a fictitious control which stabilizes the first
subsystem, Eq. (I).

Assumption I (Global Stabilizability) There
exists a C I control law K (Xl) such that the
equilibrium XI=O of the system XI=!(XI) +g

(Xl) K (Xl) is globally stable. This is established
with a C I positive definite function E (Xl) such

Xl= f(xI) +g(XI) q;(X2)

x2=Ax2+ Bu +h (Xl)

(I)

(2)

To show that the feedback control achieves
passivity, we use a positive definite storage func
tion such as

V(XI, y) =E(XI) ++yTy.

With Eqs. (5) and (6), its time-derivative is

V= aaE (f (Xl) +g (XI) KwXw) +yT (KJ(LgE) T
Xl

+ Ax2+ Bu +h(XI) + xw)·

By Assumption I and 2, the feedback control law,
Eq. (4), proves passivity.

With the additional feedback r = - ky, k >0,
its derivative is V::5: - ky Ty. This proves global
stability of its equilibrium (Xl> y) = (0, 0).

2.2 Uncertain system
The recursive design in the previous section can

be applied to a class of nonlinear systems that
have uncertainties and require good tracking
performance. Before proceeding with the detailed
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recursive design, the following Assumption 3 is
needed to obtain the fictitious control when the
nonlinear H.. control is used as the fictitious
control.

Assumption 3 There exists a CI control law Eq.
(7) such that the system Eq. (8) is transformed to
Eq. (9)

K (x" Xld, u) =K' (x" Xld) +u, (7)

xI=f (XI) +g (XI)K (x" Xld' Uf) (8)

oS = F (XI)s +GI (XI)WI+en (XI) u, (9)

where XldE R" is the desired trajectory of joints,
S(XI, Xld) ERn is the modified state, wIER'" is
the disturbance caused by uncertainties, and ufE

R" is the control input for robustness.

2.2.1 Fictitious control
In the presence of disturbances, a robust con

trol is needed as the fictitious control. A non
linear H.. control is designed as the fictitious
control. Finding the nonlinear H.. control is
tantamount to finding a stabilizing state-feedback
control input such that the closed-loop system
has an L2-gain equal to or less than r in the
input-to-output sense. In nonlinear H.. control
design, it is essential to find the solution to the
associated Hamilton-Jacobi (HJ) inequality der
ived from the input-output energy dissipation. If
a solution exists, then it will guarantee stability as
well as disturbance attenuation.

By Assumption 3 and with the performance
vector the first subsystem, Eq. (I) can be de
scribed as

oS = F (XI) S+ GJCXI) WI+ en (XI) u, (I 0)
z=Hs+Dub HTD=O, DTD>O

where F (XI), GI (XI) , en (XI), H, D are Co
matrix -valued function of suitables dimensions.

In the form of Eq. (10); the derived HJ inequal
ity is more tractable. The design of the nonlinear
H.. controller for the nonlinear system in the form
of Eq. (10) is summarized as the following theo
rem (Park and Vim, 1999).

Theorem 2 Given r>0, suppose there exists a
Co matrix-valued function p satisfying

+ HTH - pTen(XI) [DTD]-IG{(XI)P::;;:O

(II)

and there exists a non-negative function Et.s) ~

o such that aE/as=2sTPT. Then the control
input satisfying Lz-gain ::;;: r is

Uf= - [DTD]-IGl(XI) Q-I (Q=p-I)

and the derivative of the storage function satisfies

s« r211 w112- llzllz
To obtain the solution to Eq. (II) easily, it is

transformed to a nonlinear matrix inequality
(NLMI) using the Schur complement;

Solving the above NLMI yields a convex
optimization problem. Unlike the linear case, this
convex problem is not finite-dimensional. How
ever, if the matrices forming the NLMI are bound
ed, then we only need to solve a finite number of
LMIs.

The stabilizing control input at the first step
becomes

2.2.2 Real control
Assume there exists the fictitious state Xwi and

X,..2 satisfying Assumption 2; that is,

K=K'+Uf

=K", (X"'I+XW2)

=Kwx,..

It follows that the choice of X2=X"" if permit
ted, would ensure robust stability. Since X2 is not
a control input, we cannot let X2=X"" In the
cascade, its effect must be achieved through the
second subsystem.

Using y=X2-Xw as a new state, we rewrite

oS =F(xI) s + G,. (XI)W + en (xz) Kw(Y

+Xw2)

y =At"2+Bu+h(xI) - x ;

To obtain the robust control, which achieves
the L2-gain property, we use the positive definite
storage function
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Its time derivative is

v~ y21IWI12_ llz I12+ yT(2K;EGlPs+ AX2

+ Bu +h(xI) - Xw)

~ y21IwI12_ llz I12+ y T CL1A + Bu)

LlA can be bounded as

IILlAII ~alllsll +£l2IIX211 +llh(xI) II +11 xWIl1
+llxw211~p(s, Xl> X2, XWI> XW2)

If it is assumed that B <B <B for known
upper and lower bound matrices, the control
input can be chosen as

With the designed control input, the storage

function satisfies V~ y211w112_ (1IzI12+ .ellyI12), .e
>0, which achieves the L2-gain property.

3. Actuator-Level Control of a Robot
Manipulator

3.1 Dynamics of a robot manipulator with
actuators

Consider the following dynamics of a robot
manipulator actuated by permanent magnet DC
motors:

M(q)ij+N(q, q)q+C(q)=Kri (12)

t.; ~~ +Rmi+Kmq =v (13)

where qERn is the joint position, M (q) ER n x n

is the inertia matrix, and N(q, q)ERn x n repre
sents the centripetal and Coriolis torques. Sym
bols R m and L m denote the resistance and in
ductance of the armature circuit; K, and K m are
the torque and back emf parameters of the motor;
i is the current in the armature of the motor; v is
the armature voltage. Eq. (13) of the actuator
dynamics is a first-order differential equation
whose output i is the input signal to robot
dynamics.

3.2 Fictitious control (Torque-Level Con
trol)

3.2.1 Transformation of dynamics
In an overall system representing the actuator

dynamics and robot dynamics, the two subsystems

are connected in series. That is, the overall system
can be decomposed into two cascaded subsystems.
The recursive design uses this structure.

Before proceeding with the detailed recursive
design, a modified error for joint tracking which
satisfy Assumption 3 is defined as

s= q -{qd-J1(q-qd)}

=q-qn

where qd and q d are the desired position and
velocity, respectively. If the elements of the vector
approach zero as t ---> 00, so does the tracking
error of the joints.

At the torque level of the robotic system, a
suitable control input satisfying Assumption 3
can be chosen as

K=M(q) iiT+N(q, q) qT+C(q) +u

Then Eq. (12) is transformed to

S =F(q, q)s+CI(q)w+~(q)u (14)

where Ft.q, q)=-M-I(q)N(q, q), CI(q)=

M-I(q), ~(q)=M-I(q), and w=M(q) iiT+N

(q) qT + C, is a disturbance vector caused by
model uncertainties.

3.2.2 The solution to the HJ inequality
using LMI

To derive the HJ inequality for the robot
manipulator dynamics transformed to affine form,
each matrix term of Eq. (14) is substituted into
Eq. (11). Then

- (MP-T) -IN - NT(P-IM T) -1+HTH

+ I (MP-T) -I (P-I MT) -I

7
_ (MP- T) -I (DTD) -I (P- IM T)-I <0

Premultiplying and postmultiplying the in
equality by the positive definite matrices Mp-T

and p-IMT, respectively, the HJ inequality

becomes

-NQMT-MQTNT+MQTHTHQMT

+:2I-(DTD)-1<0 (15)

where Q=p-I. Using the Schur complement, Eq.
(15) can be described as an NLMI as follows:
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[
- NQMT-MQTNT +~1-(DTD)-l

HQMT
MQTH]~O
-I

(16)

The matrices M(q) and N(q, q) are non
linear functions of q and q in Eq. (16). How
ever, those matrices include trigonometric func
tions and can be bounded when each joint veloc
ity ranges between two empirically determined
extreme values. Using this fact, we suppose that
the matrices forming the above NLMI vary in
some bounded sets of the space of matrices, i. e.,

[M(q), N(q, q), H, D]

ECo{[Mi, Ni, H, DJliE{I.2.···.d,
where Co represents the convex hull.

Therefore, if

[
- NiQMT- MiQTNT+71- (DTD)-l MiQTH]

HQMT -I
~o

have a common solution Q for all iE{I, 2, "', L}
then Q is also a solution to Eq. (16), and the
stabilizing robust control input is determined as

ur> - (DTD) -IGlQ-lS

3.3 Real control input
The total control input at the torque level

becomes

K=M(q) qr+N(q, q) qr+C(q)
- (DTD) -IGlQ-ls

= K, (illli + i1ll2)

= Krilll

Using y= i - i lll as a new coordinate, we re
write

s=-M-l(q)N(q, q)s+M-l(q)w

+ M- 1(q)KriIll
2+ M-1(q)KrY

Y' - - L-1R '-L-IK '+L- l _dilll- m mZ m mq mV dt

To design the robust control, which achieves
the L 2-gain property, we use the positive definite
storage function

V(s, y) =E(s) +yTy

Its time derivative is

where ilA=2KrM-TPs-L;,lRmi-L;,lKmq

di;
- dt .

IlilAII::;: alllsil + Chll ill+ £r311 q II + II ~; II:

( . . dilll )=p S, t, q , dt

If it is assumed that b::;:b.::;: t:for known upper
and lower bound matrices, the control input can
be chosen as

With the designed control input, the storage

function satisfies V::;: y211w112_ (1IzI12+PIIYI12), (3
>0 which achieves L 2-gain property. To smooth
out the control discontinuity, the saturation-type
control can be chosen as

v=-r[llyll+ceip ( - 8t ) p-yJ
where EO and 8 are positive constants.

4. Simulation

Robust control using a recursive method is
designed for a two-degree-of-freedom planar
robot manipulator with actuators. The Simula
tion was performed under parameter uncer
tainties. The objective of the simulation is to
show the enhancement of robustness to parameter
uncertainty. The set of dynamic parameters is
summarized in Tables I and 2. As an extreme
disturbance, the mass of link 2 is assumed to vary
by 50% at 2 seconds. The system model matrices
forming LMIs are determined by the bounds of
parameter uncertainty and the trigonometric func
tions. The LMls for the matrix Q are solved using
an efficient convex algorithm in the Matlab tool
box. It should be noted that ease in controller

Table 1 Manipulatorparameters used in the simula
tion

Real Real Bound of
Length Mass Mass

Linkl 0.5 m 2 kg [1.5, 2.5J

Link2 0.3 m I kg [0.5, I.5J
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Table 2 Actuator parametersused in the simulation

Real value Bound

Inductance 0.05 H [0.03, 0.07]

Resistance 0.3 Q [0.2,0.5]

Back emf 0.065
Constant V sec/rad

[0.055, 0.Q75]

Torque
2Nm/A [1.9,2.1]

Constant

10

-10

-IS

~l.- L L-

10

20

,.

Fig. 3 Voltage of actuator of joint I

Fig. 4 Voltage of actuator of joint 2

·20

·10

·1.

.,.
o •

n-(I)

-1.

mass ml = 1.8kg and m2=0.8kg.
The position error and input voltage are shown

in Fig. 2-4, respectively. Though the control
input is saturated at the initial state, the proposed
controller shows satisfactory robustness perfor
mance even under large parameter uncertainties.•

n.t(I)

Desired trajectories of jointsFig. 1

.2.~--:---;--"7----:-----=------:------:----:

tlr--~-~-~-~-~-~-~---,

-..
....~--:---;--"7----:-----=----7-----:-----!

..

Fig. 2 Position errors of joints
5. Conclusion

tuning can be obtained since the solution of the
LMIs, if any, is found easily by an optimization
algorithm.

The joints of the manipulator are commanded
to trace trajectories shown in Fig. 1 with some
initial errors. The initial errors of the joints are
11.45° and 17.19°, respectively. The estimates of
the manipulator model matrices in Eq. (12) are

assumed to be M=0 and fJ =0. The estimate of
the gravity torque G is determined from the
equation in the dynamics using the estimates of

Using recursive design, a robust control is
designed for nonlinear uncertain systems, which
can be decomposed into two cascaded subsystems.
First, a fictitious robust controller is designed
using nonlinear Boo control. The associated HJ
inequality is transformed to an NLMI and its
approximated solution is obtained from the fact
that the terms in the matrices can be bounded.
The application of the proposed method is simple
since the gain matrix can be obtained easily by an
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efficient convex optimization algorithm. Second,
the actual robust control is designed recursively
through the design of a fictitious control. The
designed robust control is applied to a robotic
system with actuators.
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